Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
J Biomol Struct Dyn ; : 1-13, 2021 Jul 30.
Article in English | MEDLINE | ID: covidwho-2280762

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has afflicted many lives and led to approvals of drugs and vaccines for emergency use. Even though vaccines have emerged, the high mortality of COVID-19 and its insurgent proliferation throughout the masses commands an innovative therapeutic proposition for the treatment. Targeted protein degradation has been applied to various disease domains and we propose that it could be incredibly beneficial to tackle the current pandemic. In this study, we have attempted to furnish insights on the design of suitable PROTACs for the main protease (Mpro) of SARS-CoV-2, a protein that is considered to be an essential target for viral replication. We have employed protein-protein docking to predict the possible complementarity between a cereblon E3 ligase and Mpro of SARS-CoV-2, and estimate possible linker length. Molecular Dynamic simulation and analysis on generated ternary complexes demonstrated stable interactions that suggested that designed PROTAC has a potential to cause degradation. The superior characteristics rendered by PROTACS led us to propose them as possibly the next-generation antiviral drugs for SARS-CoV-2.

2.
J Biomol Struct Dyn ; : 1-12, 2021 Sep 08.
Article in English | MEDLINE | ID: covidwho-2264134

ABSTRACT

Covid-19 is a viral disease caused by the virus SARS-CoV-2 that spread worldwide and caused more than 4.3 million deaths. Moreover, SARS-CoV-2 still continues to evolve, and specifically the E484K, N501Y, and South Africa triple (K417N + E484K + N501Y) spike protein mutants remain as the 'escape' phenotypes. The aim of this study was to compare the interaction between the receptor binding domain (RBD) of the E484K, N501Y and South Africa triple spike variants and ACE2 with the interaction between wild-type spike RBD-ACE2 and to show whether the obtained binding affinities and conformations corraborate clinical findings. The structures of the RBDs of the E484K, N501Y and South Africa triple variants were generated with DS Studio v16 and energetically minimized using the CHARMM22 force field. Protein-protein dockings were performed in the HADDOCK server and the obtained wild-type and mutant spike-ACE2 complexes were submitted to 200-ns molecular dynamics simulations with subsequent free energy calculations using GROMACS. Based on docking binding affinities and free energy calculations the E484K, N501Y and triple mutant variants were found to interact stronger with the ACE2 than the wild-type spike. Interestingly, molecular dynamics and MM-PBSA results showed that E484K and spike triple mutant complexes were more stable than the N501Y one. Moreover, the E484K and South Africa triple mutants triggered greater conformational changes in the spike glycoprotein than N501Y. The E484K variant alone, or the combination of K417N + E484K + N501Y mutations induce significant conformational transitions in the spike glycoprotein, while increasing the spike-ACE2 binding affinity.Communicated by Ramaswamy H. Sarma.

3.
Probiotics Antimicrob Proteins ; 2021 Nov 27.
Article in English | MEDLINE | ID: covidwho-2240543

ABSTRACT

The COVID-19 pandemic caused by a novel coronavirus (SARS-CoV-2) is a serious health concern in the twenty-first century for scientists, health workers, and all humans. The absence of specific biotherapeutics requires new strategies to prevent the spread and prophylaxis of the novel virus and its variants. The SARS-CoV-2 virus shows pathogenesis by entering the host cells via spike protein and Angiotensin-Converting Enzyme 2 receptor protein. Thus, the present study aims to compute the binding energies between a wide range of bacteriocins with receptor-binding domain (RBD) on spike proteins of wild type (WT) and beta variant (lineage B.1.351). Molecular docking analyses were performed to evaluate binding energies. Upon achieving the best bio-peptides with the highest docking scores, further molecular dynamics (MD) simulations were performed to validate the structure and interaction stability. Protein-protein docking of the chosen 22 biopeptides with WT-RBD showed docking scores lower than -7.9 kcal/mol. Pediocin PA-1 and salivaricin P showed the lowest (best) docking scores of - 12 kcal/mol. Pediocin PA-1, salivaricin B, and salivaricin P showed a remarkable increase in the double mutant's predicted binding affinity with -13.8 kcal/mol, -13.0 kcal/mol, and -12.5 kcal/mol, respectively. Also, a better predicted binding affinity of pediocin PA-1 and salivaricin B against triple mutant was observed compared to the WT. Thus, pediocin PA-1 binds stronger to mutants of the RBD, particularly to double and triple mutants. Salivaricin B showed a better predicted binding affinity towards triple mutant compared to WT, showing that it might be another bacteriocin with potential activity against the SARS-CoV-2 beta variant. Overall, pediocin PA-1, salivaricin P, and salivaricin B are the most promising candidates for inhibiting SARS-CoV-2 (including lineage B.1.351) entrance into the human cells. These bacteriocins derived from lactic acid bacteria hold promising potential for paving an alternative way for treatment and prophylaxis of WT and beta variants.

4.
Comb Chem High Throughput Screen ; 2022 Jun 07.
Article in English | MEDLINE | ID: covidwho-2233390

ABSTRACT

INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), affects the lower respiratory tract by binding to angiotensin-converting enzyme 2 (ACE2) via its S-protein. Recent emerging SARS-CoV-2 variants from the United Kingdom (B.1.1.7) and South Africa (501Y.V2) are spreading worldwide at an alarming rate. The new variants have manifested amino acid substitution K417N, E484K and N501Y on the RBD domain that binds to ACE2. As such, these mutations may influence the binding of the S-protein to ACE2 and affect viral entry into the host cell. Methods In this study, we modelled the amino acids substitutions on the S-protein and utilised HADDOCK server to assess the S-protein RBD domain binding with ACE2. Additionally, we calculated the binding affinity of ACE2 to S-protein WT, B.1.1.7 and 501Y.V2 variants using Molecular Mechanics-Generalized Born Surface Area (MM/GBSA). Results We demonstrate that the S-protein of both variants possesses higher binding affinity to ACE2 than WT, with the South African 501Y.V2 is a more infective strain than the B.1.1.7 that originated in the United Kingdom. Conclusion The South African 501Y.V2 variant presents three amino acid substitutions that changed the H-bonding network resulting in a higher affinity to ACE2, indicating that the 501Y.V2 strain is more infective than the B.1.1.7 strain.

5.
Genes (Basel) ; 14(1)2022 Dec 23.
Article in English | MEDLINE | ID: covidwho-2215757

ABSTRACT

The hepatitis E virus (HEV) is a long-ignored virus that has spread globally with time. It ranked 6th among the top risk-ranking viruses with high zoonotic spillover potential; thus, considering its viral threats is a pressing priority. The molecular pathophysiology of HEV infection or the underlying cause is limited. Therefore, we incorporated an unbiased, systematic methodology to get insights into the biological heterogeneity associated with the HEV. Our study fetched 93 and 2016 differentially expressed genes (DEGs) from chronic HEV (CHEV) infection in kidney-transplant patients, followed by hub module selection from a weighted gene co-expression network (WGCN). Most of the hub genes identified in this study were associated with interferon (IFN) signaling pathways. Amongst the genes induced by IFNs, the 2'-5'-oligoadenylate synthase 3 (OAS3) protein was upregulated. Protein-protein interaction (PPI) modular, functional enrichment, and feed-forward loop (FFL) analyses led to the identification of two key miRNAs, i.e., miR-222-3p and miR-125b-5p, which showed a strong association with the OAS3 gene and TRAF-type zinc finger domain containing 1 (TRAFD1) transcription factor (TF) based on essential centrality measures. Further experimental studies are required to substantiate the significance of these FFL-associated genes and miRNAs with their respective functions in CHEV. To our knowledge, it is the first time that miR-222-3p has been described as a reference miRNA for use in CHEV sample analyses. In conclusion, our study has enlightened a few budding targets of HEV, which might help us understand the cellular and molecular pathways dysregulated in HEV through various factors. Thus, providing a novel insight into its pathophysiology and progression dynamics.


Subject(s)
Hepatitis E virus , MicroRNAs , Humans , 2',5'-Oligoadenylate Synthetase/genetics , Adenine Nucleotides , Hepatitis E virus/genetics , Hepatitis E virus/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Multiomics
6.
BioMedInformatics ; 2(4):553-564, 2022.
Article in English | Academic Search Complete | ID: covidwho-2199761

ABSTRACT

Omicron is the dominant strain of COVID-19 in the United States and worldwide. Although this variant is highly transmissible and may evade natural immunity, vaccines, and therapeutic antibodies, preclinical results in animal models and clinical data in humans suggest omicron causes a less severe form of infection. The molecular basis for the attenuation of virulence when compared to previous variants is currently not well understood. Using protein–ligand docking simulations to evaluate and compare the capacity of SARS-CoV-2 spike-1 proteins with the different COVID-19 variants to bind to the human α7nAChr (i.e., the core receptor under the control of the vagus nerve regulating the parasympathetic nervous system and the cholinergic anti-inflammatory pathway), we found that 10 out of the 14 mutated residues on the RBD of the B.1.1.529 (Omicron) spike, compared to between 0 and 2 in all previous variants, were present at the interaction interface of the α7nAChr. We also demonstrated, through protein–protein docking simulations, that these genetic alterations cause a dramatic decrease in the ability of the Omicron SARS-CoV-2 spike-1 protein to bind to the α7nAChr. These results suggest, for the first time, that the attenuated nature of Omicron infection in humans and animals compared to previous variants may be attributable to a particular set of genetic alterations, specifically affecting the binding site of the SARS-CoV-2 spike-1 protein to the α7nAChr. [ FROM AUTHOR]

7.
J Biomol Struct Dyn ; : 1-11, 2023 Jan 02.
Article in English | MEDLINE | ID: covidwho-2166030

ABSTRACT

The changes in the SARS-CoV-2 genome have resulted in the emergence of new variants. Some of the variants have been classified as variants of concern (VOC). These strains have higher transmission rate and improved fitness. One of the prevalent were the Omicron variant. Unlike previous VOCs, the Omicron possesses fifteen mutations on the spike protein's receptor binding domain (RBD). The modifications of spike protein's key amino acid residues facilitate the virus' binding capability against ACE2, resulting in an increase in the infectiousness of Omicron variant. Consequently, investigating the prevention and treatment of the Omicron variant is crucial. In the present study, we aim to explore the binding capacity of twenty-two bacteriocins derived from Lactic Acid Bacteria (LAB) against the Omicron variant by using protein-peptidedocking and molecular dynamics (MD) simulations. The Omicron variant RBD was prepared by introducing fifteen mutations using PyMol. The protein-peptide complexes were obtained using HADDOCK v2.4 docking webserver. Top scoring complexes obtained from HADDOCK webserver were retrieved and submitted to the PRODIGY server for the prediction of binding energies. RBD-bacteriocin complexes were subjected to MD simulations. We discovered promising peptide-based therapeutic candidates for the inhibition of Omicron variant for example Salivaricin B, Pediocin PA 1, Plantaricin W, Lactococcin mmfii and Enterocin A. The lead bacteriocins, except Enterocin A, are biosynthesized by food-grade lactic acid bacteria. Our study puts forth a preliminary information regarding potential utilization of food-grade LAB-derived bacteriocins, particularly Salivaricin B and Pediocin PA 1, for Covid-19 treatment and prophylaxis.Communicated by Ramaswamy H. Sarma.

8.
J Biomol Struct Dyn ; : 1-12, 2022 Jul 31.
Article in English | MEDLINE | ID: covidwho-1967740

ABSTRACT

This study proposes a novel model for integration of SARS-CoV-2 into host cell via endocytosis as a possible alternative to the prevailing direct fusion model. It is known that the SARS-CoV-2 spike protein undergoes proteolytic cleavage at S1-S2 cleavage site and the cleaved S2 domain is primed by the activated serine protease domain (SPD) of humanTMPRSS2 to become S2'. The activated SPD of TMPRSS2 is formed after it is cleaved by autocatalysis from the membrane bound non-catalytic ectodomain (hNECD) comprising of LDLRA CLASS-I repeat and a SRCR domain. It is known that the SRCR domains as well as LDLRA repeat harboring proteins mediate endocytosis of viruses and certain ligands. Based on this, we put forward a hypothesis that the exposed hNECD binds to the S2' as both are at an interaction proximity soon after S2 is processed by the SPD and this interaction may lead to the endocytosis of virus. Based on this hypothesis we have modelled the hNECD structure, followed by docking studies with the known 3D structure of S2'. The interaction interface of hNECD with S2' was further used for virtual screening of FDA-approved drug molecules and Indian medicinal plant-based compounds. We also mapped the known mutations of concern and mutations of interest on interaction interface of S2' and found that none of the known mutations map onto the interaction interface. This indicates that targeting the interaction between the hNECD of TMPRSS2 and S2' may serve as an attractive therapeutic target.Communicated by Ramaswamy H. Sarma.

9.
J Tradit Complement Med ; 12(1): 6-15, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1814841

ABSTRACT

BACKGROUND AND AIM: The year 2020 begins with the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that cause the disease COVID-19, and continue till today. As of March 23, 2021, the outbreak has infected 124,313,054 worldwide with a total death of 2,735,707. The use of traditional medicines as an adjuvant therapy with western drugs can lower the fatality rate due to the COVID-19. Therefore, in silico molecular docking study was performed to search potential phytochemicals and drugs that can block the entry of SARS-CoV-2 into host cells by inhibiting the proteolytic cleavage activity of furin and TMPRSS2. EXPERIMENTAL PROCEDURE: The protein-protein docking of the host proteases furin and TMPRSS2 was carried out with the virus spike (S) protein to examine the conformational details and residues involved in the complex formation. Subsequently, a library of 163 ligands containing phytochemicals and drugs was virtually screened to propose potential hits that can inhibit the proteolytic cleavage activity of furin and TMPRSS2. RESULTS AND CONCLUSION: The phytochemicals like limonin, gedunin, eribulin, pedunculagin, limonin glycoside and betunilic acid bind at the active site of both furin and TMPRSS2. Limonin and gedunin found mainly in the citrus fruits and neem showed the highest binding energy at the active site of furin and TMPRSS2, respectively. The polyphenols found in green tea can also be useful in suppressing the furin activity. Among the drugs, the drug nafamostat may be more beneficial than the camostat in suppressing the activity of TMPRSS2.

10.
Comput Biol Med ; 146: 105574, 2022 07.
Article in English | MEDLINE | ID: covidwho-1814282

ABSTRACT

With the emergence of Delta and Omicron variants, many other important variants of SARS-CoV-2, which cause Coronavirus disease-2019, including A.30, are reported to increase the concern created by the global pandemic. The A.30 variant, reported in Tanzania and other countries, harbors spike gene mutations that help this strain to bind more robustly and to escape neutralizing antibodies. The present study uses molecular modelling and simulation-based approaches to investigate the key features of this strain that result in greater infectivity. The protein-protein docking results for the spike protein demonstrated that additional interactions, particularly two salt-bridges formed by the mutated residue Lys484, increase binding affinity, while the loss of key residues at the N terminal domain (NTD) result in a change to binding conformation with monoclonal antibodies, thus escaping their neutralizing effects. Moreover, we deeply studied the atomic features of these binding complexes through molecular simulation, which revealed differential dynamics when compared to wild type. Analysis of the binding free energy using MM/GBSA revealed that the total binding free energy (TBE) for the wild type receptor-binding domain (RBD) complex was -58.25 kcal/mol in contrast to the A.30 RBD complex, which reported -65.59 kcal/mol. The higher TBE for the A.30 RBD complex signifies a more robust interaction between A.30 variant RBD with ACE2 than the wild type, allowing the variant to bind and spread more promptly. The BFE for the wild type NTD complex was calculated to be -65.76 kcal/mol, while the A.30 NTD complex was estimated to be -49.35 kcal/mol. This shows the impact of the reported substitutions and deletions in the NTD of A.30 variant, which consequently reduce the binding of mAb, allowing it to evade the immune response of the host. The reported results will aid the development of cross-protective drugs against SARS-CoV-2 and its variants.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Humans , Molecular Dynamics Simulation , Mutation , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
11.
Front Microbiol ; 12: 789062, 2021.
Article in English | MEDLINE | ID: covidwho-1581272

ABSTRACT

Mutations in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have made this virus more infectious. Previous studies have confirmed that non-structural protein 13 (NSP13) plays an important role in immune evasion by physically interacting with TANK binding kinase 1 (TBK1) to inhibit IFNß production. Mutations have been reported in NSP13; hence, in the current study, biophysical and structural modeling methodologies were adapted to dissect the influence of major mutations in NSP13, i.e., P77L, Q88H, D260Y, E341D, and M429I, on its binding to the TBK1 and to escape the human immune system. The results revealed that these mutations significantly affected the binding of NSP13 and TBK1 by altering the hydrogen bonding network and dynamic structural features. The stability, flexibility, and compactness of these mutants displayed different dynamic features, which are the basis for immune evasion. Moreover, the binding was further validated using the MM/GBSA approach, revealing that these mutations have higher binding energies than the wild-type (WT) NSP13 protein. These findings thus justify the basis of stronger interactions and evasion for these NSP13 mutants. In conclusion, the current findings explored the key features of the NSP13 WT and its mutant complexes, which can be used to design structure-based inhibitors against the SARS-CoV-2 new variants to rescue the host immune system.

12.
Comput Biol Med ; 139: 104956, 2021 12.
Article in English | MEDLINE | ID: covidwho-1474456

ABSTRACT

Mucormycosis is a severe fungal infection reported in many cancer survivors, diabetic and immune-suppressed patients during organ transplants. A vast spark in the reported COVID-19 cases is noticed in India during the second wave in May 2021, when Mucormycosis is declared an epidemic. Despite being a rare disease, the mortality rate associated with Mucormycosis is more than 40%. Spore coat proteins (CotH) are essential proteins in many pathogenic bacteria and fungi. CotH3 was reported as the vital protein required for fungal virulence in Mucormycosis. We previously reported the involvement of the host cell-surface receptor GRP78 in SARS-CoV-2 spike recognition. Additionally, GRP78 is known to be the virulence factor during Mucormycosis. Using state-of-the-art structural bioinformatics and molecular modeling tools, we predicted the GRP78 binding site to the Rhizopus delemar CotH3 protein. Our findings pave the way toward rationally designing small molecule inhibitors targeting the GRP78 and its counter proteins in both pathogenic viral (SARS-CoV-2 spike) and fungal (R. delemar CotH3) diseases.


Subject(s)
COVID-19 , Endoplasmic Reticulum Chaperone BiP , Mucormycosis , Humans , Virulence
13.
Viruses ; 13(8)2021 08 23.
Article in English | MEDLINE | ID: covidwho-1367926

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a global pandemic causing over 195 million infections and more than 4 million fatalities as of July 2021.To date, it has been demonstrated that a number of mutations in the spike glycoprotein (S protein) of SARS-CoV-2 variants of concern abrogate or reduce the neutralization potency of several therapeutic antibodies and vaccine-elicited antibodies. Therefore, the development of additional vaccine platforms with improved supply and logistic profile remains a pressing need. In this work, we have validated the applicability of a peptide-based strategy focused on a preventive as well as a therapeutic purpose. On the basis of the involvement of the dipeptidyl peptidase 4 (DPP4), in addition to the angiotensin converting enzyme 2 (ACE2) receptor in the mechanism of virus entry, we analyzed peptides bearing DPP4 sequences by protein-protein docking and assessed their ability to block pseudovirus infection in vitro. In parallel, we have selected and synthetized peptide sequences located within the highly conserved receptor-binding domain (RBD) of the S protein, and we found that RBD-based vaccines could better promote elicitation of high titers of neutralizing antibodies specific against the regions of interest, as confirmed by immunoinformatic methodologies and in vivo studies. These findings unveil a key antigenic site targeted by broadly neutralizing antibodies and pave the way to the design of pan-coronavirus vaccines.


Subject(s)
Dipeptidyl Peptidase 4/chemistry , Peptide Fragments/immunology , Peptide Fragments/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Dipeptidyl Peptidase 4/metabolism , Epitopes, T-Lymphocyte/immunology , Humans , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Binding , Protein Domains , Receptors, Coronavirus/chemistry , Receptors, Coronavirus/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Virus Internalization , COVID-19 Drug Treatment
14.
J Cell Physiol ; 236(10): 7045-7057, 2021 10.
Article in English | MEDLINE | ID: covidwho-1342890

ABSTRACT

The evolution of the SARS-CoV-2 new variants reported to be 70% more contagious than the earlier one is now spreading fast worldwide. There is an instant need to discover how the new variants interact with the host receptor (ACE2). Among the reported mutations in the Spike glycoprotein of the new variants, three are specific to the receptor-binding domain (RBD) and required insightful scrutiny for new therapeutic options. These structural evolutions in the RBD domain may impart a critical role to the unique pathogenicity of the SARS-CoV-2 new variants. Herein, using structural and biophysical approaches, we explored that the specific mutations in the UK (N501Y), South African (K417N-E484K-N501Y), Brazilian (K417T-E484K-N501Y), and hypothetical (N501Y-E484K) variants alter the binding affinity, create new inter-protein contacts and changes the internal structural dynamics thereby increases the binding and eventually the infectivity. Our investigation highlighted that the South African (K417N-E484K-N501Y), Brazilian (K417T-E484K-N501Y) variants are more lethal than the UK variant (N501Y). The behavior of the wild type and N501Y is comparable. Free energy calculations further confirmed that increased binding of the spike RBD to the ACE2 is mainly due to the electrostatic contribution. Further, we find that the unusual virulence of this virus is potentially the consequence of Darwinian selection-driven epistasis in protein evolution. The triple mutants (South African and Brazilian) may pose a serious threat to the efficacy of the already developed vaccine. Our analysis would help to understand the binding and structural dynamics of the new mutations in the RBD domain of the Spike protein and demand further investigation in in vitro and in vivo models to design potential therapeutics against the new variants.


Subject(s)
Mutation/genetics , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Brazil , COVID-19/metabolism , Humans , Protein Binding/genetics , South Africa , United Kingdom , Virulence/genetics
15.
Front Microbiol ; 12: 703145, 2021.
Article in English | MEDLINE | ID: covidwho-1337656

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been continuously mutating since its first emergence in early 2020. These alterations have led this virus to gain significant difference in infectivity, pathogenicity, and host immune evasion. We previously found that the open-reading frame 8 (ORF8) of SARS-CoV-2 can inhibit interferon production by decreasing the nuclear translocation of interferon regulatory factor 3 (IRF3). Since several mutations in ORF8 have been observed, therefore, in the present study, we adapted structural and biophysical analysis approaches to explore the impact of various mutations of ORF8, such as S24L, L84S, V62L, and W45L, the recently circulating mutant in Pakistan, on its ability to bind IRF3 and to evade the host immune system. We found that mutations in ORF8 could affect the binding efficiency with IRF3 based on molecular docking analysis, which was further supported by molecular dynamics simulations. Among all the reported mutations, W45L was found to bind most stringently to IRF3. Our analysis revealed that mutations in ORF8 may help the virus evade the immune system by changing its binding affinity with IRF3.

16.
J Mol Struct ; 1243: 130854, 2021 Nov 05.
Article in English | MEDLINE | ID: covidwho-1267870

ABSTRACT

The recently emerged SARS-CoV2 caused a major pandemic of coronavirus disease (COVID-19). Non structural protein 1 (nsp1) is found in all beta coronavirus that cause severe respiratory disease. This protein is considered as a virulence factor and has an important role in pathogenesis. This study aims to elucidate the structural conformations of nsp1 to aid in the prediction of epitope sites and identification of important residues for targeted therapy against COVID-19. In this study, molecular modelling coupled with molecular dynamics simulations were performed to analyse the conformational landscape of nsp1 homologs of SARS-CoV1, SARS-CoV2 and MERS-CoV. Principal component analysis escorted by free energy landscape revealed that SARS-CoV2 nsp1 protein shows greater flexibility compared to SARS-CoV1 and MERS-CoV nsp1. Sequence comparison reveals that 28 mutations are present in SARS-CoV2 nsp1 protein compared to SARS-CoV1 nsp1. Several B-cell and T-cell epitopes were identified by an immunoinformatics approach. SARS-CoV2 nsp1 protein binds with the interface region of the palm and finger domain of POLA1 via hydrogen bonding and salt bridge interactions. Taken together, these in silico findings may help in the development of therapeutics specific against COVID-19.

17.
3 Biotech ; 11(2): 109, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1060478

ABSTRACT

The pandemic COVID-19 was caused by a novel Coronavirus-2 (SARS-CoV-2) that infects humans through the binding of glycosylated SARS-CoV-2 spike 2 protein to the glycosylated ACE2 receptor. The spike 2 protein recognizes the N-terminal helices of the glycosylated metalloprotease domain in the human ACE2 receptor. To understand the susceptibility of animals for infection and transmission, we did sequence and structure-based molecular interaction analysis of 16 ACE2 receptors from different mammalian species with SARS-CoV-2 spike 2 receptor binding domain. Our comprehensive structure analysis revealed that the natural substitution of amino acid residues Gln24, His34, Phe40, Leu79 and Met82 in the N-terminal α1 and α2 helices of the ACE2 receptor results in loss of crucial network of hydrogen-bonded and hydrophobic interactions with receptor binding domain of SARS-CoV-2 spike protein. Another striking observation is the absence of N-glycosylation site Asn103 in all mammals and many species, lack more than one N-linked glycosylation site in the ACE2 receptor. Based on the loss of crucial interactions and the absence of N-linked glycosylation sites we categorized Felis catus, Equus caballus, Panthera tigris altaica, as highly susceptible while Oryctolagus cuniculus, Bos Tauras, Ovis aries and Capra hircus as moderately susceptible species for infection. Similarly, the E. asinus, Bubalus bubalis, Canis lupus familiaris, Ailuropoda melaleuca and Camelus dromedarius are categorized as low susceptible with Loxodonta Africana, Mus musculus, Sus scrofa and Rattus rattus as least susceptible species for SARS-CoV-2 infection. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-020-02599-2.

18.
Toxicol Rep ; 8: 73-83, 2021.
Article in English | MEDLINE | ID: covidwho-989328

ABSTRACT

SARS-CoV-2 infection was announced as a pandemic in March 2020. Since then, several scientists have focused on the low prevalence of smokers among hospitalized COVID-19 patients. These findings led to our hypothesis that the Nicotinic Cholinergic System (NCS) plays a crucial role in the manifestation of COVID-19 and its severe symptoms. Molecular modeling revealed that the SARS-CoV-2 Spike glycoprotein might bind to nicotinic acetylcholine receptors (nAChRs) through a cryptic epitope homologous to snake toxins, substrates well documented and known for their affinity to the nAChRs. This binding model could provide logical explanations for the acute inflammatory disorder in patients with COVID-19, which may be linked to severe dysregulation of NCS. In this study, we present a series of complexes with cholinergic agonists that can potentially prevent SARS-CoV-2 Spike glycoprotein from binding to nAChRs, avoiding dysregulation of the NCS and moderating the symptoms and clinical manifestations of COVID-19. If our hypothesis is verified by in vitro and in vivo studies, repurposing agents currently approved for smoking cessation and neurological conditions could provide the scientific community with a therapeutic option in severe COVID-19.

19.
J Biomol Struct Dyn ; 39(10): 3605-3614, 2021 07.
Article in English | MEDLINE | ID: covidwho-245040

ABSTRACT

The current pandemic of Covid-19 caused by SARS-CoV-2 is continued to spread globally and no potential drug or vaccine against it is available. Spike (S) glycoprotein is the structural protein of SARS-CoV-2 located on the envelope surface, involve in interaction with angiotensin converting enzyme 2 (ACE2), a cell surface receptor, followed by entry into the host cell. Thereby, blocking the S glycoprotein through potential inhibitor may interfere its interaction with ACE2 and impede its entry into the host cell. Here, we present a truncated version of human ACE2 (tACE2), comprising the N terminus region of the intact ACE2 from amino acid position 21-119, involved in binding with receptor binding domain (RBD) of SARS-CoV-2. We analyzed the in-silico potential of tACE2 to compete with intact ACE2 for binding with RBD. The protein-protein docking and molecular dynamic simulation showed that tACE2 has higher binding affinity for RBD and form more stabilized complex with RBD than the intact ACE2. Furthermore, prediction of tACE2 soluble expression in E. coli makes it a suitable candidate to be targeted for Covid-19 therapeutics. This is the first MD simulation based findings to provide a high affinity protein inhibitor for SARS-CoV-2 S glycoprotein, an important target for drug designing against this unprecedented challenge.Communicated by Ramaswamy H. Sarma.


Subject(s)
Angiotensin-Converting Enzyme 2/pharmacology , COVID-19 , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/chemistry , Binding Sites , COVID-19/therapy , Escherichia coli , Humans , Molecular Dynamics Simulation , Protein Binding , SARS-CoV-2
20.
J Infect ; 80(5): 554-562, 2020 05.
Article in English | MEDLINE | ID: covidwho-6255

ABSTRACT

OBJECTIVES: Understanding the novel coronavirus (COVID-19) mode of host cell recognition may help to fight the disease and save lives. The spike protein of coronaviruses is the main driving force for host cell recognition. METHODS: In this study, the COVID-19 spike binding site to the cell-surface receptor (Glucose Regulated Protein 78 (GRP78)) is predicted using combined molecular modeling docking and structural bioinformatics. The COVID-19 spike protein is modeled using its counterpart, the SARS spike. RESULTS: Sequence and structural alignments show that four regions, in addition to its cyclic nature have sequence and physicochemical similarities to the cyclic Pep42. Protein-protein docking was performed to test the four regions of the spike that fit tightly in the GRP78 Substrate Binding Domain ß (SBDß). The docking pose revealed the involvement of the SBDß of GRP78 and the receptor-binding domain of the coronavirus spike protein in recognition of the host cell receptor. CONCLUSIONS: We reveal that the binding is more favorable between regions III (C391-C525) and IV (C480-C488) of the spike protein model and GRP78. Region IV is the main driving force for GRP78 binding with the predicted binding affinity of -9.8 kcal/mol. These nine residues can be used to develop therapeutics specific against COVID-19.


Subject(s)
Betacoronavirus/chemistry , Coronavirus Infections/virology , Heat-Shock Proteins/chemistry , Models, Molecular , Pneumonia, Viral/virology , Spike Glycoprotein, Coronavirus/chemistry , Betacoronavirus/metabolism , Binding Sites , COVID-19 , Coronavirus Infections/metabolism , Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins/metabolism , Humans , Molecular Docking Simulation , Pandemics , Pneumonia, Viral/metabolism , Protein Domains , Protein Structure, Tertiary , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL